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Abstract

Carbon materials for electromagnetic interference (EMI) shielding are reviewed. They include composite materials,
colloidal graphite and flexible graphite. Carbon filaments of submicron diameter are effective for use in composite materials,
especially after electroplating with nickel. Flexible graphite is attractive for EMI gaskets.  2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction including non-structural and structural composites, colloi-
dal graphite, as well as EMI gasket materials.

Electromagnetic interference (EMI) shielding refers to
the reflection and/or adsorption of electromagnetic radia-
tion by a material, which thereby acts as a shield against 2. Mechanisms of shielding
the penetration of the radiation through the shield. As
electromagnetic radiation, particularly that at high fre- The primary mechanism of EMI shielding is usually
quencies (e.g. radio waves, such as those emanating from reflection. For reflection of the radiation by the shield, the
cellular phones) tend to interfere with electronics (e.g. shield must have mobile charge carriers (electrons or
computers), EMI shielding of both electronics and radia- holes) which interact with the electromagnetic fields in the
tion source is needed and is increasingly required by radiation. As a result, the shield tends to be electrically
governments around the world. The importance of EMI conducting, although a high conductivity is not required.
shielding relates to the high demand of today’s society on For example, a volume resistivity of the order of 1 V cm is
the reliability of electronics and the rapid growth of radio typically sufficient. However, electrical conductivity is not
frequency radiation sources [1–9]. the scientific criterion for shielding, as conduction requires

EMI shielding is to be distinguished from magnetic connectivity in the conduction path (percolation in case of
shielding, which refers to the shielding of magnetic fields a composite material containing a conductive filler),
at low frequencies (e.g. 60 Hz). Materials for EMI shield- whereas shielding does not. Although shielding does not
ing are different from those for magnetic fielding. require connectivity, it is enhanced by connectivity. Metals

EMI shielding is a rapidly growing application of carbon are by far the most common materials for EMI shielding.
materials, especially discontinuous carbon fibers. This They function mainly by reflection due to the free elec-
review addresses carbon materials for EMI shielding, trons in them. Metal sheets are bulky, so metal coatings

made by electroplating, electroless plating or vacuum
deposition are commonly used for shielding [10–25]. The
coating may be on bulk materials, fibers or particles.
Coatings tend to suffer from their poor wear or scratch*Tel.: 11-716-645-2593; fax: 11-716-645-3875.
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A secondary mechanism of EMI shielding is usually small value of d for nickel compared to copper is mainly
absorption. For significant absorption of the radiation by due to the ferromagnetic nature of nickel.
the shield, the shield should have electric and/or magnetic
dipoles which interact with the electromagnetic fields in
the radiation. The electric dipoles may be provided by 3. Composite materials for shielding
BaTiO or other materials having a high value of the3

dielectric constant. The magnetic dipoles may be provided Due to the skin effect, a composite material having a
by Fe O or other materials having a high value of the conductive filler with a small unit size of the filler is more3 4

magnetic permeability [10], which may be enhanced by effective than one having a conductive filler with a large
reducing the number of magnetic domain walls through the unit size of the filler. For effective use of the entire
use of a multilayer of magnetic films [26,27]. cross-section of a filler unit for shielding, the unit size of

The absorption loss is a function of the product s m , the filler should be comparable to or less than the skinr r

whereas the reflection loss is a function of the ratio s /m , depth. Therefore, a filler of unit size 1 mm or less isr r

where s is the electrical conductivity relative to copper typically preferred, though such a small unit size is notr

and m is the relative magnetic permeability. Silver, commonly available for most fillers and the dispersion ofr

copper, gold and aluminum are excellent for reflection, due the filler is more difficult when the filler unit size de-
to their high conductivity. Superpermalloy and mumetal creases.
are excellent for absorption, due to their high magnetic Polymer–matrix composites containing conductive fil-
permeability. The reflection loss decreases with increasing lers are attractive for shielding [28–59] due to their
frequency, whereas the absorption loss increases with processability (e.g. moldability), which helps to reduce or
increasing frequency. eliminate the seams in the housing that is the shield. The

Other than reflection and absorption, a mechanism of seams are commonly encountered in the case of metal
shielding is multiple reflections, which refer to the reflec- sheets as the shield and they tend to cause leakage of the
tions at various surfaces or interfaces in the shield. This radiation and diminish the effectiveness of the shield. In
mechanism requires the presence of a large surface area or addition, polymer–matrix composites are attractive in their
interface area in the shield. An example of a shield with a low density. The polymer matrix is commonly electrically
large surface area is a porous or foam material. An insulating and does not contribute to shielding, though the
example of a shield with a large interface area is a polymer matrix can affect the connectivity of the conduc-
composite material containing a filler which has a large tive filler and connectivity enhances the shielding effec-
surface area. The loss due to multiple reflections can be tiveness. In addition, the polymer matrix affects the
neglected when the distance between the reflecting sur- processability.
faces or interfaces is large compared to the skin depth. Electrically conducting polymers [60–79] are becoming

The losses, whether due to reflection, absorption or increasingly available, but they are not common and tend
multiple reflections, are commonly expressed in dB. The to be poor in the processability and mechanical properties.
sum of all the losses is the shielding effectiveness (in dB). Nevertheless, electrically conducting polymers do not
The absorption loss is proportional to the thickness of the require a conductive filler in order to provide shielding, so
shield. that they may be used with or without a filler. In the

Electromagnetic radiation at high frequencies penetrates presence of a conductive filler, an electrically conducting
only the near surface region of an electrical conductor. polymer matrix has the added advantage of being able to
This is known as the skin effect. The electric field of a electrically connect the filler units that do not touch one
plane wave penetrating a conductor drops exponentially another, thereby enhancing the connectivity.
with increasing depth into the conductor. The depth at Cement is slightly conducting, so the use of a cement
which the field drops to 1/e of the incident value is called matrix also allows the conductive filler units in the
the skin depth (d ), which is given by composite to be electrically connected, even when the filler

units do not touch one another. Thus, cement–matrix
1 composites have higher shielding effectiveness than corre-

]]d 5 , (1)]] sponding polymer–matrix composites in which the poly-pfmsœ
mer matrix is insulating [80]. A shielding effectiveness of

where f5frequency, m 5magnetic permeability5m m , 40 dB at 1 GHz has been attained in a cement–matrix0 r
27

m 5relative magnetic permeability, m 5 4p 3 10 composite containing just 1.5 vol.% discontinuous 0.1r 0
21 21 21H m , and s 5electrical conductivity in V m . mm-diameter carbon filaments [80]. Moreover, cement is

Hence, the skin depth decreases with increasing fre- less expensive than polymers and cement–matrix compos-
quency and with increasing conductivity or permeability. ites are useful for the shielding of rooms in a building

7 21 21For copper, m 5 1, s 5 5.8 3 10 V m , so d is 2.09 [81–83]. Similarly, carbon is a superior matrix thanr

mm at a frequency of 1 GHz. For nickel of m 5 100, polymers for shielding due to its conductivity, but carbon–r
7 21 21

s 5 1.15 3 10 V m , so d is 0.47 mm at 1 GHz. The matrix composites are expensive [84].
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A seam in a housing that serves as an EMI shield needs whereas carbon fibers (isotropic pitch based, 3000 mm
to be filled with an EMI gasket (i.e. a resilient EMI long) at 20 vol.% give a shielding effectiveness of 46 dB
shielding material), which is commonly a material based at 1 GHz [54]. In a cement–matrix composite, fiber
on an elastomer, such as rubber [85–98]. An elastomer is volume fractions are typically less than 1%. Carbon
resilient, but is itself not able to shield, unless it is coated filaments at 0.54 vol.% in a cement paste give an effective-
with a conductor (e.g. a metal coating called metallization) ness of 26 dB at 1.5 GHz [80], whereas carbon fibers
or is filled with a conductive filler (typically metal (isotropic pitch based, 3 mm long) at 0.84 vol.% in a
particles). The coating suffers from its poor wear resist- mortar give an effectiveness of 15 dB at 1.5 GHz [101].
ance. The use of a conductive filler suffers from the These effectiveness measurements were made with the
resulting decrease in resilience, especially at a high filler same fixture and about the same sample thickness.
volume fraction that is usually required for sufficient Metals are more attractive for shielding than carbons
shielding effectiveness. As the decrease in resilience due to their higher conductivity, though carbons are
becomes more severe as the filler concentration increases, attractive in their oxidation resistance and thermal stability.
the use of a filler that is effective even at a low volume Thus, metal fibers of a small diameter are most desirable,
fraction is desirable. Therefore, the development of EMI though metal fibers made by forming or casting typically
gaskets is more challenging than that of EMI shielding cannot be finer than about 2 mm. However, submicron
materials in general. diameter metal fibers can be made by coating submicron

For a general EMI shielding material in the form of a diameter carbon filaments with a metal. Nickel filaments of
composite material, a filler that is effective at a low diameter 0.4 mm, as made by electroplating 0.1 mm-
concentration is also desirable, although it is not as critical diameter carbon filaments with nickel, have been shown to
as for EMI gaskets. This is because the strength and be particularly effective [98,100,101]. They are known as
ductibility of a composite tend to decrease with increasing nickel filaments because they are mostly nickel rather than
filler content when the filler–matrix bonding is poor. Poor carbon. A shielding effectiveness of 87 dB at 1 GHz has
bonding is quite common for thermoplastic polymer been attained in a polymer–matrix composite containing
matrices. Furthermore, a low filler content is desirable due just 7 vol.% nickel filaments. Nickel is more attractive than
to the greater processability, which decreases with increas- copper, partly due to its superior oxidation resistance. The
ing viscosity. In addition, a low filler content is desirable oxide film is poor in conductivity and is thus detrimental to
due to the cost saving and weight saving. the connectivity among filler units.

In order for a conductive filler to be highly effective, it Table 1 compares the EMI shielding effectiveness at
preferably should have a small unit size (relative to the 1–2 GHz of polyethersulfone (PES)–matrix composites
skin depth), a high conductivity (for shielding by reflec- with various fillers at the same sample thickness of 2.8
tion) and a high aspect ratio (for connectivity). Fibers are mm. The shielding effectiveness for all specimens was
more attractive than particles due to their high aspect ratio. determined by the coaxial cable method using the same

EMI shielding is one of the main applications of tester. Even at a low filler content of 7 vol.%, the nickel
conventional short carbon fibers [99]. Due to the small filaments provide much greater shielding effectiveness than
diameter, carbon filaments (catalytically grown, of diam- all the other fillers of Table 1. In the case of the matrix
eter 0.1 mm) are more effective at the same volume being polyimidesiloxane (PISO) instead of PES, nickel
fraction in a composite than conventional short carbon particles of size 1–5 mm provide greater EMI shielding
fibers for EMI shielding, as shown for both thermoplast effectiveness at 1–2 GHz than silver particles of size
[54,100] and cement [80,101] matrices. For example, in a 0.8–1.35 mm [57]. Together with Table 1, this means that
thermoplast matrix, carbon filaments at 19 vol.% give an nickel filaments provide greater shielding effectiveness
EMI shielding effectiveness of 74 dB at 1 GHz [100], than silver particles.

Table 1
Electromagnetic interference shielding effectiveness at 1–2 GHz of PES–matrix composites with various fillers

Filler Vol.% EMI shielding Ref.
effectiveness (dB)

Al flakes (1531530.5 mm) 20 26 [54]
Steel fibers (1.6 mm dia.330|56 mm) 20 42 [54]
Carbon fibers (10 mm dia.3400 mm) 20 19 [54]
Ni particles (1|5 mm dia.) 9.4 23 [56]
Ni fibers (20 mm dia.31 mm) 19 5 [100]
Ni fibers (2 mm dia.32 mm) 7 58 [100]
Carbon filaments (0.1 mm dia.3.100 mm) 7 32 [100]
Ni filaments (0.4 mm dia.3.100 mm) 7 87 [100]
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The submicron diameter filaments mentioned above are resulting coating is effective for EMI shielding. It is
discontinuous and are thus not sufficient for providing commonly used for shielding in television scopes.
structural composites [54,80,100]. Continuous fiber poly-
mer–matrix structural composites that are capable of EMI
shielding are needed for aircraft and electronic enclosures 6. Conclusion
[84,102–111]. The fibers in these composites are typically
carbon fibers (of diameter around 10 mm), which may be Carbon materials for EMI shielding are mainly carbon
coated with a metal (e.g. nickel [112]) or be intercalated fiber composites, colloidal graphite and flexible graphite.
(i.e. doped) to increase the conductivity [113,114]. The composites include non-structural composites with

discontinuous fibers and structural composites with con-
tinuous fibers. Carbon filaments of submicron diameter, as

4. Flexible graphite for shielding made catalytically from carbonaceous gases, are effective,
especially after electroplating with nickel. Flexible

A particularly attractive EMI gasket material is flexible graphite is attractive for EMI gaskets.
graphite, which is a flexible sheet made by compressing a
collection of exfoliated graphite flakes (called worms)
without a binder. During exfoliation, an intercalated Acknowledgements
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